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Analytical and numerical study of the nonlinear
interaction between a point vortex and a
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(Received 22 July 1997 and in revised form 19 May 1998)

The unsteady interaction between a vortex and a wall-bounded vorticity layer is stud-
ied as a model for transport and mixing between rotational and irrotational flows.
The problem is formulated in terms of contour integrals and a kinematic condition
along the interface which demarcates the vortical and potential regions. Asymptotic
solutions are derived for linear, weakly nonlinear and nonlinear long-wave approxima-
tions. The solutions show that the initial process of ejection of vorticity into the irro-
tational flow occurs at a stationary point along the interface. A nonlinear model is de-
rived and shows that such a stationary point is more likely to exist when the circulation
of the vortex is counter to the vorticity in the layer. A Lagrangian numerical method
based on contour dynamics is then developed for the general nonlinear problem. Two
sets of results are presented where for every initial height of the vortex its magnitude
and sign are varied. In both sets, it is observed that when the magnitude of the vortex
is held constant a much stronger interaction occurs when the sign of the vortex circu-
lation is opposite to that of the vorticity in the layer. Moreover, when the horizontal
velocity of the vortex is close to the velocity of the interfacial waves a strong nonlinear
interaction between the vortex and the layer ensues and results in the ejection of thin
filaments of vorticity into the irrotational flow. In order to study the dynamical conse-
quences of strong unsteady interaction, the wall pressure distribution is computed. The
results indicate that a significant rise in the magnitude of the wall pressure is associated
with ejection of vorticity from the wall. The present analysis confirms that coherent
vortical structures in the outer layer of a turbulent boundary layer can cause ejection
of concentrated wall-layer vorticity and explains how and when this process occurs.

1. Introduction
Many basic flows such as boundary layers, mixing layers and jets contain con-

centrated regions of vorticity which interact with each other and the surrounding
irrotational flow (Roshko 1976; Falco 1977). The deterministic evolution and inter-
action of these coherent structures have a significant effect on momentum and heat
transport properties. In turbulent boundary layers, for example, the unsteady interac-
tions between these regions are important in the exchange of momentum between the
outer layer and wall regions. The causative element (Robinson 1991) in the momen-
tum transport and mixing properties of the boundary layer is the interaction between
the outer vortices and the shear layers. Ejection and entrainment are the nonlinear
phenomena which are the manifestations of this transport.
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Figure 1. Five examples showing the interaction of a vortex with a wall-bounded shear layer. (a)
Eddies off the California coast interacting with coastal currents transport fluid away from the coast
and out to the ocean (taken from Liu et al. 1988). (b) A vortex shed from the trailing edge of a wing
(during takeoff or landing) passing over a flap. (c) A vortex shed from a bluff body interacts with
the Earth boundary layer as it convects downstream. (d) A sketch of a turbulent boundary layer
where an eddy in the outer layer initiates ejection of vorticity from the wall region (Falco 1991).
(e) A schematic of an experiment for the interaction of a patch of vorticity with a wall-bounded
shear flow. A screen creates a shear flow along a plate. The characteristics and thickness of the
shear flow are determined by the screen design. Above a vortex is shed from an airfoil and convects
downstream interacting with the wall-bounded shear layer.

In figure 1, we present examples of physical flows occurring in nature or experiment
where concentrated patches of vorticity interact with a wall-bounded shear layer.
Figure 1(a) is a schematic taken from Liu, Simpson and Schedvin (1988) showing
a system of eddies off the California coast interacting with coastal currents. Note
the presence of coastal streamers indicating strong momentum transport via this
inviscid interaction. These geophysical observations (see also Ikeda & Apel 1981)
have motivated several studies of the vortex/shear layer interaction (Stern & Pratt
1985; Stern & Flierl 1987; Bell 1990). Figure 1(b) shows vortices shed from the trailing
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edge of a wing and interacting with flaps extended during takeoff and landing. The
spanwise vortices are shed in response to unsteady effects such as manoeuvring or
upstream turbulence and are convected downstream in the wake of the wing (sheared
flow) passing close to the flap surface. Figure 1(c) shows another example where
vorticity is shed from the edge of a bluff body such as a mountain ridge or a wide
building. This vorticity then interacts with the Earth boundary layer as it propagates
downstream. A schematic of a turbulent boundary (figure 1d) layer as suggested
by Falco’s experiments (1991) presents another example of vorticity interacting with
wall-bounded shear layers. Each of these examples occurs in high Reynolds number
flow where most of the flow is inviscid but rotational and where viscous effects
are confined to a thin sublayer near the wall. The objective of the present paper
is to examine the nonlinear but inviscid interaction between a concentrated patch
of vorticity and a wall-bounded shear layer. A model for this generic problem can
be reproduced in a laboratory experiment as shown in figure 1(e). A screen placed
upstream creates a sheared flow along a plate. The characteristics and thickness of
the sheared flow are determined by the screen design. A vortex is then shed from the
trailing edge of an airfoil in response to an abrupt unsteady motion.

The interaction of vorticity with a wall-bounded shear layer has been extensively
investigated in the context of turbulent boundary layers. These experiments have
motivated the parameter range studied in this paper and a brief summary of the
important experimental results is given. It has been hypothesized that strong interac-
tion between the vortical (inner) flow in the wall region and concentrated regions of
vorticity in the mainly irrotational (outer) region result in mixing of fluid between the
two regions (Falco 1991). Falco concluded that the coherent motions can be divided
into two groups. One whose dynamics are largely independent of the wall and lie in
the outer region. The second group lies in the wall region and is dependent upon the
high shear and impermeability of the wall. The outer region motions initiate ejection
of wall region fluid into the outer layer. In addition, Falco observed, using statistical
two-point vorticity correlations, that an important feature of this interaction is that
the portion of the outer region structure closest to the wall had spanwise vorticity
whose sense of rotation was opposite to the mean spanwise vorticity in the wall region
layer. Myose & Blackwelder (1994) studied the interaction between experimentally
generated spanwise vortical eddies and low-speed streaks in the wall region. They also
found that the sign of the spanwise outer region eddies was an important factor in
determining whether the interaction resulted in ejection of wall region fluid into the
outer layer. Note that the viscous sublayer extends to about y+ ≈ 30 and the inner
layer extends to y+ ≈ 1000–10 000, where y+ = y(τw/ρ)1/2/ν is the coordinate normal
to the wall non-dimesionalized by the kinematic viscosity and the wall shear. This
suggests that the inviscid interaction mechanism, which is the subject of the present
paper, is important in the inner layer–outer layer interaction.

The simple model we consider here is a wall-bounded uniform shear layer inter-
acting with a point vortex. In the present work we determine how a vortex placed
in the irrotational flow may enhance or subdue the momentum transfer between a
wall-bounded shear layer and an irrotational flow. Toward this end, we (i) describe the
physical processes involved in the nonlinear, unsteady interaction between the layer of
vorticity and the vortex and (ii) determine the conditions under which substantial and
rapid ejection of vorticity from the shear layer occurs. In particular, we examine both
analytically and numerically two sets of results motivated by two physical problems:
the vortex/shear layer interaction when a vortex shed from an airfoil or bluff body
passes over a wall-bounded shear layer (figure 1b, c, e) and the interaction of outer



158 O. V. Atassi

layer vortices in a turbulent boundary layer with the wall-layer vorticity (figure 1d).
The order of magnitude estimates for the vortex strength and height suggested by
these physical problems are presented in § 4.1.

The evolution of regions of constant vorticity (uniform shear) in two-dimensional,
incompressible, inviscid flows have been extensively investigated using contour dy-
namics. The assumption of uniform vorticity allows one to solve Euler’s equations
in terms of integrals along an interface separating different regions of constant vor-
ticity (see Zabusky, Hughes & Roberts 1979). The numerical solution calculates the
Lagrangian evolution of the interface which corresponds to a line of discontinuous
vorticity. As a result of the discontinuous distribution of vorticity and the neglect of
viscosity, scales develop which are too small to resolve at some finite time. Dritschel
(1988) has devised a scheme for extending contour dynamics calculations by limiting
the formation of scales which lie below a prescribed cutoff limit. This allowed him to
extend his computations for long times in order to investigate the long-time state of
vortex interactions between patches of uniform vorticity (Dritschel & Legras 1993).

Contour dynamics models have been utilized to study a wide variety of flows ranging
from geophysical flows to boundary layers and jets. Pullin (1981) first computed the
evolution of a wall-bounded layer of uniform vorticity subject to periodic, finite-
amplitude disturbances. His numerical results showed the development of overturning
disturbances which entrained irrotational flow into the layer. Stern & Pratt (1985)
showed that finite-amplitude disturbances to a thin, wall-bounded layer of vorticity
steepened and the formation of propagating vorticity fronts occurred. Jimenez &
Orlandi (1993) considered the same model and further focused on the thin layer limit.
Their results indicated that under certain conditions the layer rolls up and breaks into
compact vortices which propagate downstream at constant speed. In order to study
unsteady effects that occur when a localized region of vorticity interacts with a layer
of vorticity Bell (1990) and Atassi, Bernoff & Lichter (1997) studied the interaction
between a point vortex and a layer of constant vorticity. This work focused on cases
where the vortex was weak compared to the vorticity in the layer and thus the
disturbances to the layer were small. Under these conditions, the unsteady interaction
modified the linear behaviour of the system when the vortex propagated with a speed
equal to that of the interfacial waves. In this case, a strong interaction between the
vortex and the layer of vorticity resulted and growing and steepening disturbances
ensued.

In the present investigation, we are interested in the mechanisms involved in the
vortex-induced ejection of vorticity from the wall and the effect of varying the sign of
the vortex circulation. Consequently, we consider cases where the inertia (circulation)
of the vortex is large (but either positive or negative) compared to that of the vorticity
layer. We do not consider three-dimensional effects which are an important feature of
turbulent flows. Instead, we focus on understanding in detail the interaction between a
vortex and a layer of vorticity with the aim of showing the importance and properties
of this interaction in the transfer of momentum between a vortical region lying near
a wall and a mainly irrotational flow lying above it.

In § 2, we present the general formulation of the model. The full nonlinear problem
is formulated in terms of the Lagrangian evolution of the interface separating vortical
and irrotational flow. Section 3 develops a thin layer theory and studies the various
limiting cases which arise depending upon the strength of the vortex relative to that
of the layer. We show that a variety of solutions to this interaction exist ranging
from propagating solitary waves to strong unsteady interactions which result in the
ejection and rollup of vorticity into the irrotational flow. Moreover, we show that
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Figure 2. Schematic of the model problem studying the interaction between a point vortex with a
wall-bounded layer of piecewise-uniform vorticity. (a) The assumed initial state of the system. An
unperturbed uniform, wall-bounded shear layer is forced by a vortex which lies above it. (b) After
some time, t0, the interface deforms due to the velocity induced by the vortex. Subsequently, the
vortex is displaced by the deformation of the interface.

strong interaction is much more likely to occur when the circulation of the vortex
is counter to that of the vorticity layer. The numerical formulation is shown in § 4
and the numerical results for the deformation of the interface and the pathline of
the point vortex are presented. These results are compared with the results of § 3 and
are extended far beyond the validity of the analytical results. Section 5 computes the
wall pressure to study the dynamics which result from the kinematics of the interface.
Finally § 6 discusses and summarizes the conclusions of the work.

2. Formulation
The two-dimensional, incompressible, inviscid flow is decomposed into an inner

wall-bounded shear flow Di with constant vorticity, ω, and an outer region Do of
irrotational flow extending to infinity. A coordinate system (x, y) with the x-axis
parallel to the wall and the y-axis perpendicular to it is considered. In this coordinate
system, the wall is located at y = 0. We choose a frame of reference moving with
the velocity U. In this frame of reference, the wall moves downstream with speed
U and the fluid velocity goes to zero as y → ∞. The two regions are separated by
the interface located at y = H(x, t). The shear layer extends upstream to −∞ and
downstream to +∞ where it has constant thickness H∞ and thus ω = U/H∞. The
geometry of the model is shown in figure 2. We non-dimensionalize all lengths with
respect to H∞, and time with respect to H∞/U. This yields a non-dimensional vorticity
of one.

We briefly describe the formulation of the model. For more details see Pullin (1981)
and Atassi et al. (1997). The velocity field is the superposition of the velocities induced
by the vorticity in the layer and the point vortex in the presence of an impermeable
wall. Using a complex representation of the Biot-Savart law, the complex conjugate
of the velocity induced by the layer at the observation point z = x+ iy is

(u(z)− iv(z))L =
1

2πi

∫ ∫
Di

[
1

z − z′ −
1

z − z̄′

]
dA′ (2.1)

where z′ = x′+iy′ represents the source point and the subscript L denotes the velocity
induced by the layer of vorticity. We apply the Area theorem (Milne-Thomson 1968,
p. 133) to transform the double integral over the area, Di, to a line integral over the
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contour C enclosing the region Di. This yields

(u− iv)L =
1

2πi

[∮
C

y′ − y
z′ − z dz′ −

∮
C

y′ − y
z̄′ − z dz̄′

]
, (2.2)

where the direction of integration is chosen to be counterclockwise. The assumption of
finite thickness, H∞ as |x| → ∞, ensures that the velocity field is finite. These integrals
can be evaluated analytically for a shear layer of constant thickness. Thus the
numerical quadrature is limited to the perturbed part of the contour. The expression
for the velocity, equation (2.2), is suitable for accurate numerical quadrature because
it no longer involves a singular kernel.

Adding to (2.2) the velocity field induced by the point vortex and its image we
obtain

u− iv =
1

2πi

[∮
C

y′ − y
z′ − z dz′ −

∮
C

y′ − y
z̄′ − z dz̄′

]
+

Γ̃

2πi

(
1

z − zv
− 1

z − z̄v

)
, (2.3)

where zv(t) = xv(t) + iyv(t) is the location of the point vortex and the non-dimensional
parameter, Γ̃ = Γ/(UH∞), is the ratio of the inertial effects of the vortex with
circulation Γ to the inertial effects of the uniform shear layer. Note that due to the
image vortex, the vertical velocity at the wall is zero.

The motion of the point vortex depends upon its interaction with the shear layer
and its image. Its complex conjugate velocity is given by

u(zv)− iv(zv) =
dz̄v
dt

=
1

2πi

[∮
C

y′ − yv
z′ − zv

dz′ −
∮
C

y′ − yv
z̄′ − zv

dz̄′
]

+
Γ̃

4πyv
. (2.4)

In addition, conservation of x-momentum may be applied to derive the relation
(Bell 1990; Atassi et al. 1997)

Γ̃ [yv(t)− yv(0)] = −1

2

∫ ∞
−∞

[H2(x, t)−H2(x, 0)]dx. (2.5)

Equation (2.5) relates the momentum of the vortex to that of the layer and indicates
that the degree of momentum transfer between the inner and outer regions can be
related to the vertical displacement of the vortex.

Finally, we specify the initial shape of the interface, y = H(x, 0) = H0(x) and the
kinematic condition that a fluid particle on the interface will remain on the interface,

v =
∂H

∂t
+ u

∂H

∂x
at y = H(x, t). (2.6)

In summary, the fully nonlinear interaction between the uniform shear layer and the
point vortex is formulated in terms of an initial-value problem involving three coupled
equations (2.3), (2.4), (2.6). This initial-value problem defining the coupled motions of
the interface and the point vortex, in general, must be solved numerically. However,
in order to study the different stages of evolution from an initially unperturbed, thin
layer to rapidly growing finite-amplitude disturbances, we first examine some limiting
cases where the initial thickness of the layer is small compared to the height of the
vortex and the interaction between the layer and the vortex is weak. As opposed to
stability theory where the primary aim is to determine the conditions where wave-like
disturbances grow, this initial-value problem studies how a prescribed initial velocity
field evolves in time and determines the conditions which result in the ejection of
vorticity into the irrotational flow.
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3. Thin layer theory
We consider disturbances to the interface whose variation in the streamwise di-

rection is small relative to the variation in the transverse direction. This implies
from (2.4) that the initial height of the point vortex must be large compared to the
thickness of the layer, i.e. yv(0)� 1. In this case, it is possible to derive an analytical
expression for the velocity field in terms of the interfacial height, H(x, t), and the
velocity induced by the vortex. We then substitute the velocity field induced at the
interface into the kinematic condition. This yields the governing equation for the
interface. By examining cases where analytical solutions to the kinematic equation
may be obtained, we calculate the initial stages of growth of the interface either to the
transition to strong inner–outer unsteady interaction leading to ejection of vorticity
away from the wall and entrainment of irrotational flow or to the relaxation of the
interaction to wave-like behaviour.

3.1. The velocity field induced by the vorticity layer

The velocity field induced by the thin vorticity layer can be derived by considering
the stream function, ψ(x, y, t), defined such that

u =
∂ψ

∂y
(3.1)

and

v = −∂ψ
∂x
. (3.2)

Although ψ is continuous across the interface, it is convenient to introduce the
notation ψ(I) for the stream function in Di and ψ(II) for the stream function in Do.
Relating the stream function to the vorticity we obtain

∂2ψ(I)

∂x2
+
∂2ψ(I)

∂y2
= −1, 0 < y < H(x, t), (3.3)

and

∂2ψ(II)

∂x2
+
∂2ψ(II)

∂y2
= 0, y > H(x, t). (3.4)

To complete this boundary-value problem we must specify conditions at the wall
and the interface. By impermeability, the vertical velocity at y = 0 must be zero and
the velocity goes to zero in the far-field implying

∂ψ(I)

∂x
= 0, y = 0, (3.5)

and

∂ψ(II)

∂x
→ 0 and

∂ψ(II)

∂y
→ 0, y →∞. (3.6)

At the interface, y = H(x, t), the horizontal and vertical velocities are continuous
yielding

∂ψ(I)

∂x
=
∂ψ(II)

∂x
(3.7)

and

∂ψ(I)

∂y
=
∂ψ(II)

∂y
. (3.8)
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Since the flow is irrotational in Do, we can use Cauchy’s formula to express the
complex conjugate of the velocity in terms of its expression along the interface L,

(u− iv)(II) =
1

2πi

∫
L

(u− iv)(I)

z′ − z dz′ (3.9)

where z′ ∈ L. In the inner (shear) layer and the region of the outer (irrotational)
layer where the distance above the interface is small compared to the long-wavelength
disturbances on the interface, the streamwise variation of the flow field is small relative
to the variation in the transverse direction. To represent this, we introduce the slow
variable X = εx where 0 < ε � 1. As a result, at the interface, y = H(X, t) and the
kinematic condition becomes

v =
∂H

∂t
+ εu

∂H

∂X
. (3.10)

Near the interface, the variation in x is small compared to that in y; however far
above the layer the variation in x and y may be of the same order. Hence, in order
to obtain a solution which is uniformly valid in Di and Do, we must solve equations
(3.3) and (3.4) with the conditions (3.5)–(3.8).

To this end, we expand the stream function and the velocity field in powers of ε,

ψ(I,II) = ψ
(I,II)
(0) + εψ

(I,II)
(1) + · · · , (3.11)

(u− iv)(I,II) = (u− iv)(I,II)
(0) + ε(u− iv)(I,II)

(1) + · · · . (3.12)

Using these expansions we determine the velocity field to O(ε) for three different cases
of the scaling of yv and Γ̃ in terms of ε. Note that this expansion results from the
long-wave assumption, ∂H/∂x = O(ε). Although H(x, t) may appear locally constant
for finite variation of x = O(1), ∂H/∂X = O(1) and H(X, t) is not constant for

variations of X = O(1). For example, if H = 1 +H1e
−X2

, H varies from H1 + 1 to 1.
For the small-amplitude case treated in § 3.3.1, it is further assumed that H1 = O(ε).

3.1.1. Case I: Γ̃ = O(1) and yv � O(1/ε)

When the vortex strength is finite and the vortex very far above the layer, yv �
O(1/ε), the velocity induced by the vortex on the layer is o(ε) and the velocity field
produced by the deformation of the layer is due solely to its self-interaction.

The leading-order term of the expansion (3.11) in the inner region, ψ(I)
(0) , must satisfy

∂2ψ
(I)
(0)

∂y2
= −1 (3.13)

and the boundary condition

∂ψ
(I)
(0)

∂x
= 0 at y = 0. (3.14)

This suggests that

ψ
(I)
(0) = −y

2

2
+ a1(X, t)y. (3.15)

As a result,

u
(I)
(0) = −y + a1(X, t) (3.16)
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and

v
(I)
(0) = 0. (3.17)

Note that since u(I)
(0) vanishes at the interface for large |x|, a1(X, t)→ 1 as |x| → ∞.

We now determine the expression for the leading-order term of expansion (3.11),
ψ(II), in the outer region Do. Since for y > H(X, t) the flow is irrotational, (u− iv)(II) is
an analytic function of the complex variable z. Applying Cauchy’s integral formula,
using conditions (3.6)–(3.8) and evaluating the velocity on the interface we obtain

(u− iv)(II)
(0) = 1

2
(u− iv)(I)

(0) +
1

2πi
C

∫ ∞
−∞

(u− iv)(I)
(0)

(X ′ −X)
dX ′, (3.18)

where the integral in (3.18) is a Cauchy principal value.
Since by continuity of the velocity (3.7) and (3.8), v(II)

(0) = v
(I)
(0) = 0, equation (3.18)

implies that u(II)
(0) = 0 and u(I)

(0) = 0. Therefore, equation (3.16) at the interface yields

a1(X, t) = H(X, t). (3.19)

The leading-order expansion of the velocity is then

u
(I)
(0) = H(X, t)− y, v

(I)
(0) = 0, u

(II)
(0) = 0, v

(II)
(0) = 0. (3.20)

The O(ε) expansion of ψ(x, y, t) in the inner region must satisfy

∂2ψ
(I)
(1)

∂y2
= 0 (3.21)

and

∂ψ
(I)
(1)

∂x
= 0 at y = 0. (3.22)

Hence,

ψ
(I)
(1) = a2(X, t)y (3.23)

and

u
(I)
(1) = a2(X, t), v

(I)
(1) = −y∂H

∂X
, (3.24)

where a2(X, t) is a function to be determined.
For the outer solution, we again use Cauchy’s integral formula and since (u−iv)0 = 0

on the interface the only contribution at O(ε) is

(u− iv)(II)
(1) =

1

2πi

∫
L

(u− iv)(I)
(1)

(z′ − z) dz′, z ∈ Do. (3.25)

In order to determine a2(X, t), we consider the O(ε) expansion of the outer velocity
lying an O(1) distance above the interface. Using Hilbert’s inversion formula to express
(3.25) in terms of the vertical velocity at the interface and where y is O(1), we obtain

u
(II)
(1) =

1

π
C

∫ ∞
−∞

H(X ′, t)[∂H(X ′, t)/∂X ′]

(X ′ −X)
dX ′. (3.26)

Using (3.8) and substituting (3.26) into (3.24) gives

a2(X, t) =
1

π
C

∫ ∞
−∞

H(X ′, t)[∂H(X ′, t)/∂X ′]

(X ′ −X)
dX ′. (3.27)
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Equation (3.26) corresponds to the Hilbert transform, H (−v(1)), of the vertical
velocity and gives the horizontal velocity in Do in terms of the interfacial height,
H(X, t) and its derivative. The velocity field induced far above the interface at a
distance y = O(1/ε) has slow variations in both the x- and y-directions. Therefore,
we introduce the slow variable Y = εy. The O(ε) velocity far above the interface can
then be expressed in terms of the vertical velocity at the interface,

(u− iv)(II)
(1) =

1

π

∫ ∞
−∞

H(X ′, t)[∂H(X ′, t)/∂X ′]

(X ′ −X)− iY
dX ′. (3.28)

Note that far above the interface the horizontal and vertical velocity are the same
order of magnitude.

The velocity field induced on the vortex by the interface diminishes as their distance
apart becomes large and is proportional to the square of the amplitude of the interface.
This nonlinear result suggests that disturbances on the interface must propagate at a
speed close to that of the vortex or the interaction will wane as the distance between
the disturbances and the vortex increases. This idea is consistent with the linear
theory (Atassi et al. 1997) which showed that a strong vortex–interface interaction
only occurred when the phase speed of an interfacial wave coincided with the velocity
of the vortex.

3.1.2. Case II: Γ̃ = O(1) and yv = O(1/ε)

When the vortex strength is finite and the vortex is somewhat nearer to the layer,
yv = O(1/ε), the effect of the vortex on the layer is O(ε). In this case, u(I,II)

(0) , v
(I,II)
(0)

and v
(I)
(1) remain unchanged (see (3.20) and (3.25) respectively) but now u

(I)
(1) has an

additional term due to the presence of the vortex (2.4),

u
(I)
(1) =

1

π
C

∫ ∞
−∞

H(X ′, t)[∂H(X ′, t)/∂X ′]

(X ′ −X)
dX ′ +

Γ̃

π

[
Yv

(X −Xv)2 + Y 2
v

]
(3.29)

where Γ̃ = O(1) and y = O(1). Evaluating the velocity field at the position of the
vortex (X = Xv, εy = Yv), we find that (uv, vv) ∼ O(ε).

3.1.3. Case III: Γ̃ = O(1/ε) and yv = O(1/ε)

When the vortex is strong, Γ̃ = O(1/ε), the vortex contributes to the velocity field
for y = O(1) at leading order (2.4). If we introduce Γ0 = εΓ̃ = O(1) we obtain

u
(I)
(0) = (H(X, t)− y) +

Γ0

π

[
Yv

(X −Xv)2 + Y 2
v

]
,

v
(I)
(0) = 0, u

(II)
(0) =

Γ0

π

[
Yv

(X −Xv)2 + Y 2
v

]
, v

(II)
(0) = 0

 (3.30)

and

u
(I)
(1) =

1

π
C

∫ ∞
−∞

H(X ′, t)[∂H(X ′, t)/∂X ′]

(X ′ −X)
dX ′,

v
(I)
(I) = −y∂H(X, t)

∂X
+

2Γ0

π

yYv(X −Xv)

((X −Xv)2 + Y 2
v )2

.

 (3.31)

Note that from (2.4) the velocity at the vortex (Xv, Yv) is uv(0)
= Γ0/(4πYv) and

vv = O(ε).
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3.2. The evolution of the interface

In this subsection, we use the velocity field determined in the last subsection to derive
the equation governing the evolution of the interface for the three limiting cases
examined. Substituting the velocity field at the interface into the kinematic condition
(3.10) for cases I, II and III respectively, we obtain

∂H

∂T
+H

∂H

∂X
+
∂H

∂X


0
0
Γ0

π

Yv

Y 2
v + (X −Xv)2

=


0
0
2Γ0

π

Yv(X −Xv)

((X −Xv)2 + Y 2
v )2

H
(3.32)

where we have introduced the slow time variable, T = εt. The above results show that
the vortex velocity induced by the layer is O(ε) and that induced by its image is equal
to cv = εΓ̃ /(4πYv). The velocity of the vortex is O(1) only for the case Γ̃ = O(1/ε).
In this case, the horizontal velocity is constant and cv = Γ0/(4πYv). Moreover, the
vertical displacement of the vortex is small relative to its initial height. Hence to
leading order, Yv(t) ∼ Yv(0) = d where d is a constant. In the subsections to follow,
we study different cases of the kinematic condition for various scalings of H(X, t)
and Γ̃ that exhibit a variety of phenomena including rapid growth, steepening of the
interface, propagation of waves and which suggest cases to study numerically where
ejection of vorticity may occur.

3.3. The linear evolution of the interface

We consider different limits of the kinematic equation where Γ̃ and H(X, t) are such
that the governing equation for the interface is linear.

3.3.1. Small-amplitude disturbances under a weak forcing

We assume the effect of the vortex on the interface is weak, Γ̃ = O(1), and the
disturbance to the interface is small,

H(X,T ) = 1 + εη(X,T ). (3.33)

The kinematic equation (3.32) then reduces to

∂η

∂T
+
∂η

∂X
=

2Γ̃ d

π

X

(X2 + d2)2
. (3.34)

This has solutions of the form

η(X,T ) =
Γ̃ d

π

(
1

(X − T )2 + d2)
− 1

(X2 + d2)

)
(3.35)

where the first term represents a travelling wave propagating downstream with con-
stant speed and the second term corresponds to the steady solution associated with
the point vortex. Note this is the long-wave limit of the general linear theory solution
obtained in Atassi et al. (1997). Substituting this solution into (2.5) and taking the
limit as T →∞ we see that the vertical displacement of the vortex asymptotes to the
height

Yv = d− ε Γ̃
2πd

(3.36)

and that the terminal state of the system is a steady state.
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3.3.2. The initial growth of disturbances

We consider the case where a small, initial disturbance is forced by a strong vortex
(Γ̃ = O((1/ε)). For time t = O(1), disturbances to the interface are small and

H(X, t) = 1 + εη(X, t). (3.37)

The kinematic equation becomes

∂η

∂t
=

2Γ0d

π

X

(X2 + d2)2
. (3.38)

This equation has the solution

η(X, t) = η0(X) +
2Γ0d

π

Xt

(X2 + d2)2
. (3.39)

From (3.39) we can see that the expansion in equation (3.37) is not uniformly valid
for t� 1 because disturbances to the interface become large. However, this solution
indicates that for t = O(1), the interface is going to grow linearly with time due to
the forcing of the vortex and the rate of this growth is proportional to the strength
of the vortex. The solution is antisymmetric in X implying that when Γ0 > 0(Γ0 < 0)
the interface upstream of the vortex intrudes into the wall layer (irrotational flow)
and downstream the interface intrudes into the irrotational flow (wall layer). This
solution corresponds to the initial stage of the vortex-induced ejection of vorticity
from the thin layer to the irrotational flow and gives the initial growth of the interface
for any vortex whose circulation scales like O(1/ε) or stronger, i.e. we can always
scale t and H such that the first and fourth terms balance in (equation (3.32)) and
obtain equation (3.38). When the vortex is stronger, only the timescale of the growth
is faster.

The effect of this growing disturbance on the vertical vortex displacement may be
calculated by substituting into equation (2.5). This yields

Yv(t) = d− εΓ0

8πd3
t2. (3.40)

This solution indicates that as the disturbance grows linearly in time the vertical
displacement of the vortex from its initial position is proportional to time squared
and thus implies that the expansion for the leading-order position of the vortex breaks
down for t = O(1/ε1/2).

3.3.3. The effect of a strong vortex on finite-amplitude disturbances

We consider a strong vortex acting on finite-amplitude disturbances. This case
corresponds to a second stage in the vortex-induced deformation of the interface
where the first stage was characterized in the previous subsection and corresponded
to linear growth in time. The strength of the vortex is assumed large such that the
velocity it induces dominates the evolution of the interface. For this to occur, we
choose Γ̃ = Γ0/ε

2. In this case, the horizontal velocity of the vortex at leading order
is due to the effect of the wall and we can write Xv = Cvt where Cv = εcv = Γ0/(4πd).
Under these conditions, the evolution equation for the interface (3.32) becomes

∂H

∂t
+

Γ0d

π((X − Cvt)2 + d2)

∂H

∂X
=

2Γ0d(X − Cvt)H
π((X − Cvt)2 + d2)2

. (3.41)
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We choose a reference frame moving with the vortex and introduce the variable
ξ = X − Cvt. Substituting into (3.41) yields,

∂H

∂t
+ c(ξ)

∂H

∂ξ
=

(2Γ0d)ξH

π(ξ2 + d2)2
, (3.42)

where c(ξ) = Cv(3d
2 − ξ2)/(ξ2 + d2). The function c(ξ) has two zeros at the points

ξ± = ±
√

3d. (3.43)

The two points ξ± correspond to points along the characteristics which are stationary.
When Γ0 > 0 (Γ < 0) the points on the interface upstream (downstream) of ξ−(ξ+)
and downstream (upstream) of ξ+(ξ−) are moving upstream (downstream) relative to
the vortex whereas for ξ− < ξ < ξ+ the points are moving downstream (upstream).
In order to satisfy conservation of mass in the neighbourhood of these two stationary
points we expect the interface to grow (decay) rapidly near ξ+(ξ−) and near ξ−(ξ+)
to decay (grow).

From equation (3.42), we first consider the equation for the characteristics

−Cvdt =
(ξ2 + d2)dξ

(ξ +
√

3d)(ξ −
√

3d)
(3.44)

subject to the initial condition

ξ = ξ0 at t = 0. (3.45)

Solving this initial value problem, we obtain

t = − 1

Cv

{
(ξ − ξ0) +

2d√
3

[
ln

∣∣∣∣∣
(
ξ −
√

3d

ξ +
√

3d

)(
ξ0 +

√
3d

ξ0 −
√

3d

)∣∣∣∣∣
]}

(3.46)

or

ξ −
√

3d

ξ +
√

3d
e(
√

3/2d)ξ0 = λe−(
√

3Cv/2d)t (3.47)

where λ = (ξ0 −
√

3d)/(ξ0 +
√

3d)e
√

3/(2d)ξ0 . The characteristics are plotted in the (ξ, t)-

plane in figure 3. Two asymptotes lie at ξ± = ±
√

3 which are the stationary points in
the flow. In figure 3(a), d and Cv are taken to be one for simplicity. The points which
initially lie between the two stationary points are drawn toward the downstream
stationary point, ξ+ =

√
3. The velocity of the points reaches a maximum directly

below the vortex at ξ = 0 and then decreases to zero as we approach ξ+. Thus, even
though points are converging towards the second stationary point, ξ+, their velocity
goes to zero as they approach it and the characteristics do not cross in finite time.
Points which are initially downstream of ξ+ move upstream and slowly approach it
whereas points which are initially upstream of ξ− continue to propagate upstream
and hence away from ξ−.

We now consider the equation for the interface evolution,

− 8ξd2

(ξ2 + d2)(ξ +
√

3d)(ξ −
√

3d)
dξ =

dH

H
. (3.48)

Integrating equation (3.48), we obtain

H(ξ, t) = H(ξ0, 0)
(ξ2 + d2)(ξ2

0 − 3d2)

(ξ2
0 + d2)(ξ2 − 3d2)

. (3.49)
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Figure 3. (a) The characteristics in ξ, t space for different initial locations, ξ0 = −5,−1, 10 where
d and cv were chosen to be 1. Note that as time increases, disturbances propagate towards the
asymptote ξ+ = 1.73 for ξ > ξ− and away from the asymptote ξ− = −1.73 for ξ < ξ+. (b) The
characteristics in ξ, t space for different initial locations, ξ0 = 5, 1,−10 where d = 1 and cv = −1.
As time increases, disturbances propagate towards the asymptote ξ− = −1.73 for ξ > ξ− and away
from the asymptote ξ+ = 1.73 for ξ > ξ−

Note that equations (3.46) and (3.49) give a parametric representation of the solution
(t, H) in terms of (ξ, ξ0). Also note that for Γ0 > 0 (Cv > 0) and −

√
3d < ξ0 <

√
3d,

both t and H increase monotonically with ξ. As ξ →
√

3d, t and H become large.
When ξ0 >

√
3d, both t and H will increase as ξ decreases and become large as

ξ →
√

3d. Using (3.47) the asymptotic behaviour (for large t) of H in terms of t is
given by

H(ξ+, t) ∼ H0(ξ0, 0)

3

[
(ξ0 +

√
3d)2

(ξ2
0 + d2)

]
e
√

3/(2d)[Cvt+(
√

3d−ξ0)]. (3.50)

Thus for Γ0 > 0, exponential growth occurs near ξ =
√

3d in the interface height. This
exponential growth is the flow response to the streamwise compression that occurs at
the stationary point, ξ+. This solution implies that the interface will grow rapidly near
ξ+ and that nonlinear, short-scale and unsteady interaction effects between the vortex
and the interface will modify the next stage of the interface evolution. Furthermore,
(3.50) indicates that the timescale for the growth of the disturbance scales like d2/Γ
in this stage. This is the timescale associated with points traversing a circle of radius
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d around the vortex and is consistent with the assumption that the dynamics of the
interface evolution are dominated by the influence of the vortex.

When ξ0 < −
√

3d and Γ0 > 0, we have a stable solution which for large t tends to

H(ξ0, t) = H(ξ0, 0)
(ξ2

0 − 3d2)

ξ2
0 + d2

. (3.51)

On the other hand for Γ0 < 0 (Cv < 0), if we examine (3.42) we see that the solutions
to (t, H) are the same as those for Γ0 > 0 but with t being changed to −t and H to
−H . Thus the problem exhibits time reversal symmetry. As will be seen in the results
of the numerical computations as well as the nonlinear analysis in the next section,
the symmetric behaviour for ±Γ0 is a result of the linearity. Nonlinear results clearly
show a more unstable solution for Γ0 < 0.

The results of this limiting case are in accordance with the boundary layer model
of Doligalski & Walker (1984). They studied the vortex-induced separation of flow
from a viscous boundary layer by solving the boundary layer equations and showed
that a vortex induces an adverse pressure gradient that results in the eruption of
boundary layer fluid away from the wall. Furthermore, the location of the erupting
fluid occurred near the ‘outflow’ stagnation point which corresponds to ξ+ =

√
3d.

Thus, the initial mechanism for ejection of vortical flow into the outer layer is the same.

3.4. The nonlinear evolution of the interface

In this subsection, we consider two cases of equation (3.32) for the evolution of
the interface. In the first case, the effect of the vortex is negligible and so the self-
interaction of the layer acts alone. In the second case, the self-interaction of the layer
is balanced by the effect of the vortex.

3.4.1. Finite-amplitude disturbances not influenced by the vortex

We consider the limit where Γ̃ ∼ o(1/ε) and H(X,T ) is O(1). Applying (3.32), the
equation governing the evolution of the interface then becomes

∂H

∂T
+H

∂H

∂X
= 0. (3.52)

This result was first derived by Stern & Pratt (1985) who were studying the evolution
of a thin, unforced layer of uniform vorticity. The solution of this equation is

H(X,T ) = H0(X −HT ) (3.53)

where H0 = H(X, 0) is the initial shape of the interface. The solution indicates that
the higher portions of the interface propagate faster than the lower parts resulting in
the formation of a vorticity front. Moreover, this implies that steepening will occur
on the downstream side of the disturbance and breaking will occur at

Tb = −min

[
1

H ′0(X −HT )

]
. (3.54)

This result has also been shown to occur for more general distributions of vorticity
(Jimenez & Orlandi 1993). Before the vorticity front overturns and becomes multi-
valued, nonlinear short-wave interactions become important and equation (3.52)
breaks down. However, since this system is dispersive (Rayleigh 1887), we expect
dispersion to counteract the steepening effect of the nonlinearity. In particular, if
we further assume that the disturbances to the layer are small and the vortex has
a very weak influence on the interface, Γ̃ ∼ o(1), then a weakly nonlinear analysis
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can be done where steepening effects and dispersion may balance each other to
result in a wave of permanent form. The equation which governs this balance is the
Benjamin–Ono equation (Stern & Pratt 1985; Atassi 1997),

∂η

∂T̃
+ η

∂η

∂X̃
− 1

2π

∫ ∞
−∞

e−ikX̃ |k|
∫ ∞
−∞

∂η

∂X ′
eikX ′dX ′dk = 0 (3.55)

where T̃ = ε2t and X̃ = X − T . The integral term in (3.55) represents the dispersive
effect of the irrotational flow on the shear layer. This equation and its solitary
wave solutions have also been both observed and shown to exist in two-dimensional,
transitioning boundary layers (Kachanov, Rhyzhov & Smith 1993) and in stratified
flows of large depth (Benjamin 1967; Davis & Acrivos 1967). Equation (3.55) has
solutions of the form (Benjamin 1967)

η(X̃, T̃ ) =
1

1 + X̃2
. (3.56)

Note that this solution also has the same form as the linear long-wave limit solution
(3.35). Note also that the integral term in (3.55) which represents dispersive effects
is directly proportional to the slope of the interface implying that dispersive effects
become more important as the interface steepens.

Finally, when no vortex is present, weakly nonlinear effects have been shown to be
important for the evolution of slowly modulated wave packets (Balagondar, Maslowe
& Melkonian 1987; Pullin et al. 1989). The nonlinear Schrödinger equation describes
this evolution and Pullin et al. (1989) have suggested that instability associated with
the NLS equation may explain the focusing of vorticity into thin filaments.

3.4.2. Balance between the nonlinear self-interaction of the layer and the vortex

In § 3.3.3, we showed that when the vortex dominates the flow growing disturbances
result in the neighbourhood of the unstable stationary point. Furthermore, the vortex-
dominated flow is antisymmetric with respect to the orientation of the vortex, i.e.
Γ(0) → −Γ(0), t → −t implies (u, v) → −(u, v). In this subsection, we consider the
complete nonlinear evolution equation (3.32) to investigate the effect that the nonlinear
self-interaction of the interface has on the vortex-induced ejection described in the
previous subsection.

The equation governing the evolution of the interface is

∂H

∂T
+ c(H, ξ)

∂H

∂ξ
=

(2Γ0d)ξH

π(ξ2 + d2)2
(3.57)

where ξ = X − cvT and where

c(H, ξ) = (H − cv) +
Γ0d

π(ξ2 + d2)
. (3.58)

The wave speed along the characteristics is stationary if

ξ± = d

(
3Γ0 + 4πdH

Γ0 − 4πdH

)1/2

. (3.59)
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For this to occur, the following conditions must be satisfied:

H(ξ, T ) <
Γ0

4πd
for Γ0 > 0

H(ξ, T ) <
3|Γ0|
4πd

for Γ0 < 0.

 (3.60)

Note that the condition for Γ0 > 0 is much more restrictive and implies that the
horizontal velocity of the vortex must be greater than the horizontal velocity of
the unforced (3.52) layer. Since instability is associated with the existence of stationary
points, Γ0 < 0 will lead to instabilities for vortices which are three times weaker than
vortices for which Γ0 > 0.

The term c(H, ξ) corresponds to the horizontal velocity of the interface disturbance.
The nonlinear self-interaction term implies that higher points will propagate faster
than lower points resulting in the formation of a shock on the downstream face of
the disturbance. If Γ0 > 0, the nonlinear term adds to the horizontal velocity of
the interfacial disturbances and we expect the disturbances to propagate downstream
with a velocity which is much higher than that of the vortex. Conversely, if Γ0 < 0
the nonlinear term reduces the horizontal velocity of the interfacial disturbances and
hence the interface will undergo a much more sustained interaction with the vortex.

As in § 3.3.3, solutions to (3.57) may be determined in the neighbourhood of the
stationary points, ξ±, and it is found that near ξ+(ξ−) and Γ0 > 0 disturbances will
grow (decay). Similarly, when Γ0 < 0 disturbances will grow (decay) near ξ−(ξ+).
However, in this case equation (3.60) shows that stationary points can more easily
exist when Γ0 < 0 than Γ0 > 0. Physically, this suggests that when the horizontal
velocity induced by the vortex is counter to that of the layer a back flow in a reference
frame moving with the vortex is more likely to occur and which results in the ejection
of vorticity into the irrotational flow.

Finally, the horizontal velocity due to the effect of the vortex decreases as one
moves away from the vortex. As a result, for a disturbance downstream of the vortex
(Γ̃ > 0) we expect steepening to occur on the upstream face of the disturbance. Hence,
the steepening effect of the point vortex and the layer may act in opposite directions
suggesting that under the right conditions the forcing and the self-interaction may
balance, resulting in the propagation of a solitary wave. This possibility is suggested
by rewriting equation (3.57) in conservation form,

∂H

∂T
+

∂

∂ξ

[
H2/2 +

Γ0dH

π(ξ2 + d2)
− cvH

]
= 0. (3.61)

4. Numerical method
The system of equations (2.3)–(2.4) is solved using the Lagrangian method of

contour dynamics (Zabusky et al. 1979), which tracks the deformation of the interface.
Equations (2.3) and (2.4) are spatially integrated by applying the trapezoidal rule.
The Lagrangian points which comprise the interface,

dx

dt
= u, (4.1)

dy

dt
= v (4.2)
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and the point vortex

dxv
dt

= uv, (4.3)

dyv
dt

= vv (4.4)

are integrated temporally using a second-order Adams–Bashforth scheme. To save
computation time the numerical integration is limited to the perturbed part of the
interface, i.e. disturbaces which depart from the height of the unperturbed interface
by more than 10−5. An analytic solution to (2.2) is used for the unperturbed layer,
i.e. the region (−∞,∞)U[0, 1]. The spatial domain was adjusted such that when an
endpoint exceeded the height of the uperturbed interface by more than 10−5, a point
was added to the end of the domain.

We choose, in § 4.3, yv(0) = 10 and a large computational domain initially extending
from [−100, 100]. To efficiently collocate the points we initially distribute them non-
uniformly where the density of points is a maximum directly below the vortex, x = 0.
It was found that in the cases considered, the velocity field advected the Lagrangian
points towards regions of large velocity variation. Using this set of non-uniformly
distributed points, we were able to resolve relatively small scales without resorting to
an adaptive node adjustment scheme. To this end, we introduce a weight function,
W (x), such that

N∑
i=0

W (xi)∆x = (N + 1)∆x = the length of the computational domain (4.5)

where (N + 1) corresponds to the number of points and ∆x is a uniform distance
between points determined by the ratio of the length of the computational domain to
the number of points in the domain. The weighting function is a quadratic polynomial
of the form

W (xi) = α0x
2
i + α1 (4.6)

where α0 and α1 are constants and xi correspond to equally spaced points on the
interface. Furthermore, we impose the smallest spacing between the points at x = 0,
implying

α1 = W (0) (4.7)

where W (0) is a chosen parameter. Substituting (4.6) and (4.7) into (4.5) and solving
we obtain

α0 =
(N + 1)(1−W (0))∆x

N∑
i=0

x2
i

+W (0). (4.8)

For the numerical cases to be studied, W (0) = 1/10.

4.1. Numerical results

In this section, we present the results of the contour dynamics simulations. The range
of magnitude of the vortex strength and height is estimated from the following two
examples. If the vortex is shed from an airfoil and lies outside a boundary layer of
thickness δ, then assuming H∞ = δ/5, we find |Γ̃ | ∼ 2.5cL(c/δ) = 10–40, where cL is
the lift coefficient and c is the airfoil chord. For a vortex lying in the outer layer of a
turbulent boundary layer, Γ̃ = O(Uδ). This gives a range, |Γ̃ | ∼ 2–8.
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Γ̃ yv(t = 0) H(x, t = 0) cv

±5 10 1 ±0.04
±10 10 1 ±0.08
±20 10 1 ±0.16
±40 10 1 ±0.32

Table 1. Selected parameters for the eight cases. Recall cv = Γ̃ /(4πyv(0)) is the initial horizontal

velocity induced by the image vortex. Note that the cases where Γ̃ > 0 correspond to situations
where the vortex is in phase with vorticity in the layer whereas when Γ̃ < 0 the vortex is 180◦ out
of phase with the vorticity in the layer.

The cases studied can be divided into two groups. The first group corresponds to the
shed-vortex case where the vortex is far above the interface relative to the thickness
of the shear layer. In this case, the thin layer theory developed in the last section is
applicable for small times where the slope of the interface and the displacement of the
vortex due to the layer are not too large. For larger times, these assumptions are no
longer valid and the only alternative is to study these cases numerically. The second
group of cases assume that the vortex lies close to the layer, i.e. within the order of the
thickness of the layer. Although the theory developed in § 3 does not apply for this
group of cases, we investigate whether the initial qualitative behaviour is the same.
For example, we examine whether the amplitude of the interfacial disturbances is
larger and the unsteady interaction more sustained when the circulation of the vortex
is counter to that of the layer. We also study the dynamic effects of the vortex–shear
layer interaction by computing the wall pressure for several cases. As a measure of
the numerical error, the results are compared with conservation of x-momentum and
conservation of vorticity at each timestep.

4.1.1. Vortex of varying strength far above the shear layer

We present several plots of the time evolution of the interface between the shear
layer and the potential flow region. In each case, the interface is initially flat and the
vortex is placed ten layer thicknesses above the interface. The strength and direction
of the circulation are varied in eight cases, shown in table 1, to (i) determine the
initial conditions under which a strong interaction between the vortex and the layer
takes place and results in the ejection of vorticity into the irrotational flow and (ii)
compare the evolution of the interface with the theory developed in § 3.

In figure 4, the deformation of the interface is shown for the cases Γ̃ = 5, 10, 20, 40.
In these cases, the sense of the rotation of the vortex is the same as the sense of the
vorticity in the layer, i.e. Γ̃ > 0. All the cases are run until t = 50 except for the
Γ̃ = 40 case which is stopped at t = 30 because of the formation of small scales. The
vortex is off the scale of the figure. For 0 < t < 10, the vortex deforms the interface
causing a trough to form directly below the vortex. Downstream of the trough a
wave propagates downstream at a speed close to one, i.e. the unperturbed horizontal
velocity of the wall. In the four cases considered, the amplitude of the disturbances
ranges from 0.2 to 1 with the largest corresponding to the vortex with the greatest
circulation. When the interfacial disturbances are not too large (Γ̃ = 5, 10), we expect
the wave-like behaviour to be qualitatively similar to the linear and weakly nonlinear
equations ((3.35) and (3.55)).

For the cases where Γ̃ = 5 and 10 two disturbances are formed: a steady trough
which remains below the vortex and a solitary wave which propagates downstream
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Figure 4. The deformation of the interface delineating the uniform vorticity layer from the
irrotational flow at five different times. The circulation of the vortex is Γ̃ = 5, 10, 20, 40 and its
initial height is yv(0) = 10. The vertical height of the vortex is outside the scale of the figure. The
square, circle, asterisk and × correspond to the x-location of the vortex for the cases Γ̃ = 5, 10, 20, 40
respectively. The smallest disturbances to the interface correspond to the smallest values of Γ̃ .

with a speed close to one. This is in agreement with the linear solution (3.35) which
shows that a steady solution below the vortex is superposed with a solitary wave which
propagates downstream with speed near one. When Γ̃ = 20 and 40 the amplitude
of the interfacial disturbances is larger and dispersion becomes significant as the
upstream side of the wave steepens. As a result, small waves are left upstream of
the main disturbance but far downstream of the vortex. Nonlinear effects modify the
linear and weakly nonlinear solutions (3.35), (3.55). The dispersion which is observed
is qualitatively consistent with (3.55) which shows that dispersive effects become more
important when the slope of the interface steepens.

Since the amplitude of the interfacial disturbances is not too large, we also expect
that the velocity induced by the deformed interface on the vortex is small since the
vortex lies far above the interface (equation (3.28)). As a result, the horizontal velocity
of the vortex should be approximately cv = Γ̃ /(4πd) = 0.04, 0.08, 0.16, 0.32 for the four
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Figure 5. The horizontal and vertical displacement of the vortex. The circulation of the vortex
is Γ̃ = 40 and its initial height yv(0) = 10. The solid line corresponds to Γ = 5, the dashed line
Γ = 10, the dot-dashed line Γ = 20, and the dotted line Γ = 40. The long-time height predicted by
the thin layer theory is indicated by the horizontal dashed lines in (a).

Γ̃ /(4πyv(0)) c̄v

0.04 0.04
0.08 0.08
0.16 0.17
0.32 0.34

Table 2. A comparision of the theoretically approximated values of cv used in § 3
and the numerical values, c̄v .

cases. This is confirmed in table 2 comparing the value cv = Γ̃ /(4πd) with the average
value of the numerical results shown in figure 5(b). These computations support the
asymptotic analysis in § 3 where the leading-order horizontal velocity was assumed to
be cv . Since the horizontal velocity of the vortex is small relative to the downstream
velocity of the propagating wave, the interaction between the vortex and the interface
is expected to wane for long times. The diminishing interaction can be seen in figure
5(a) where the vertical displacement of the vortex is plotted as a function of time. In
all four cases, the descent of the vortex is small justifying the asymptotic expansions
made in § 3. Moreover, for long times the descent of the vortex slows and appears
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Figure 6. The deformation of the interface delineating the uniform vorticity layer from the
irrotational flow at five different times. The circulation of the vortex is Γ̃ = −5,−10,−20 and its
initial height is yv(0) = 10. The vertical height of the vortex is outside the scale of the figure. The
square, circle and asterisk correspond to the x-location of the vortex for the cases Γ̃ = −5,−10,−20
respectively.

to asymptote to an equilibrium height. For Γ̃ = 5 and 10 the decreasing rate of
descent of the vortex with time is most clearly seen and so we compare these cases
to the asymptotic result (3.36). The analytical solution is indicated in figure 5(a) by
the dashed horizontal line and corresponds to the long-time steady-state height of
the vortex. For Γ̃ = 5 and 10 this small-amplitude, asymptotic solution gives good
agreement with the contour dynamics solution.

Figure 6 presents the deformation of the interface when Γ̃ = −5,−10,−20 where
the circulation of the vortex has sign opposite to the vorticity in the wall layer. All
the cases are run until t = 50 except for the Γ̃ = −20 case which is stopped at
t = 30 because of the formation of small scales. As in the first set of cases, the
amplitude of the interfacial disturbances grow with increasing |Γ̃ |. However, here the
amplitude of the disturbances is much larger and for the case Γ̃ = −20 overturning
and entrainment of irrotational flow occurs. Moreover, from Γ̃ = −10 to −20 a
bifurcation in behaviour occurs from wave-like disturbances to ejection of a large
blob of vorticity which is overturning and entraining irrotational flow into the layer.

Figures 7 and 8 present a more detailed view of the deformation of the interface
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Figure 7. The deformation of the interface delineating the uniform vorticity layer from the
irrotational flow at five different times. The circulation of the vortex is Γ̃ = −5 and its initial height
is yv(0) = 10. The vertical height of the vortex is outside the scale of the figure. The x-location of
the vortex is indicated by the upward pointing triangle.

when Γ̃ = −5 and −10. For 0 < t < 30, the behaviour in both cases is characterized
by growth and steepening of the interface directly below the vortex. For longer times
a trough propagates downstream and a positive disturbance lies directly below the
vortex. These solutions are qualitatively similar to (3.35) for Γ̃ < 0. Moreover, the
vertical ascent of the vortex to an equilibrium height (figure 11) is close to that
predicted by the linear theory (3.36) and is indicated in figure 11(a) by the dashed
line. When Γ̃ = −10, the amplitude of the disturbance is larger (0.5) and exhibits
nonlinear steepening. Eventually, small-scale dispersive waves form on the upstream
face of the positive disturbance. Also note that in figure 7 the amplitude of the wave
is nearly 0.3 times the initial thickness of the layer while in figure 8 it is nearly 0.6
times its initial thickness. These disturbances are larger than those shown in figure
4 where Γ̃ = 5 and 10, respectively. We also observe that the distance between the
x-location of the vortex and the x-location of the disturbance is much smaller than
those shown in figure 4.

In figures 9 and 10 the circulation of the vortex is Γ̃ = −20 and Γ̃ = −40,
respectively. However, as opposed to the travelling wave-like solutions shown in
figures 4, 7 and 8 we observe a bifurcation in behaviour to growing mound-like
disturbances which overturn and entrain irrotational flow deep into the layer. When
Γ̃ = −20, the interface exhibits rapid and continuous growth until t = 20. After t = 20,
the interface overturns and a narrowing crevice of irrotational flow is entrained into
the layer. When Γ̃ = −40, rapid growth occurs throughout the entire simulation,
0 6 t 6 30. The initial growth of the shear layer has the same asymmetric form
as given by equation (3.38). The narrowing finger of vorticity is then ejected far
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Figure 9. As figure 7 but for four different times and the circulation of the vortex is Γ̃ = −20.
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Figure 10. As figure 9 but for Γ̃ = −40.

Γ̃ /(4πyv(0)) c̄v

−0.04 −0.04
−0.08 −0.08
−0.16 −0.17
−0.32 −0.34

Table 3. A comparision of the theoretically approximated values of cv used in §3 and the
numerical values, c̄v .

into the irrotational flow and rolls up. By t = 30, the disturbance has grown to an
amplitude of nearly six times the initial thickness of the layer. Note that downstream
of the disturbance the thickness of the layer is approximately 0.2; this illustrates that
vorticity is taken from downstream of the vortex and is ejected into the irrotational
flow.

Figures 11 and 12 show the horizontal and vertical displacements of the vortex for
the cases Γ̃ = −5,−10,−20,−40 respectively. The horizontal velocities of the vortex
are nearly constant and equal to cv in all four cases as shown in table 3. This is
confirmed in the table comparing the value cv = Γ̃ /(4πd) with the average value of
the numerical results shown in figure 11(b). Again the similarity between cv and c̄v
support the arguments and analysis in § 3. The vertical displacement of the vortex is
much larger when Γ̃ = −40 and its vertical velocity has not levelled off by t = 30
implying a strong and sustained interaction between the vortex and the layer. Also
the velocity induced by the layer displaces the vortex away from the layer. As a result,
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Figure 11. The horizontal and vertical displacement of the vortex. The circulation of the vortex is
Γ̃ = −5, −10, −20 and its initial height is yv(0) = 10. The solid line corresponds to Γ̃ = −20, the
dashed line Γ̃ = −10 and the dotted line Γ̃ = −5. The long-time height predicted by the thin layer
theory for Γ̃ = −5,−10 is indicated by the horizontal dashed lines in (a).

one might then expect that the interaction should wane more quickly than the Γ̃ = 40
case. However, since the horizontal velocity of the disturbance is close to that of the
vortex, as is indicated by the upward pointing triangle in figure 10, the total distance
between the vortex and the layer does not grow very large with time and a strong
unsteady interaction is sustained. Moreover, the large bifurcation in behaviour that
occurs between the Γ̃ > 0 and Γ̃ < 0 cases (figures 4 & 10) indicates that the sense
of the vortex plays an important role in the overturning and ejection of the vorticity
in the layer.

In figure 13 we present the pathlines of the vortex for the cases Γ̃ = 5, 10, 20, 40
and Γ̃ = −5,−10,−20,−40 where 0 6 t 6 30. When Γ̃ > 0, the vertical displacement
of the vortex is towards the layer and the horizontal distance the vortex moves
downstream by t = 30 is directly related to the vortex strength. However, the vortex
paths are nearly the same, regardless of the vortex strength. For Γ̃ < 0, the vortex
is vertically displaced away from the layer and propagates upstream a horizontal
distance which is proportional to the vortex strength. Despite the ascent of the vortex
away from the layer for Γ̃ < 0, we observe that the interaction is stronger when
Γ̃ < 0 than when Γ̃ > 0, even though the vortex moves closer to the layer in this
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Figure 12. The horizontal and vertical displacement of the vortex. The circulation of the vortex is
Γ̃ = −40 and its initial height is yv(0) = 10.
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Figure 13. The pathlines of the vortex for 0 6 t 6 30: (a) Γ̃ = 5, 10, 20, 40, (b)
Γ̃ = −5,−10,−20,−40. The solid, dashed, long-dashed, and dot-dashed lines correspond to
Γ̃ = ±5,±10,±20,±40 respectively.
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Figure 14. The deformation of the interface delineating the uniform vorticity layer from the
irrotational flow at four different times. The circulation of the vortex is Γ̃ = −2,−4 and the initial
height of the vortex is yv(0) = 3. The square and circle indicate the position of the vortex for the
cases Γ̃ = −2,−4.

case. This suggests that the vertical displacement does not significantly change the
qualitative behaviour of the interaction.

4.1.2. Vortex of varying strength lying close to the thin layer

We consider three cases where the vortex is initially close to the layer, i.e. yv(0) = 3,
and we vary the strength and orientation of the vortex such that Γ̃ = −2,−4,−8.
In all three cases, the evolution of the interface is studied from 0 6 t 6 20 and the
interface is initially flat. We have observed in figure 13 that when Γ̃ < 0 the vortex
ascends from the layer and when Γ̃ > 0 the vortex descends towards the layer. In
spite of this, we observed that large disturbances and a strong vortex–layer interaction
occur when Γ̃ < 0. However, in the three cases studied in this subsection the vortex
is close to the layer, so its vertical displacement may play a more important role
in the evolution of the interface. We thus study these cases to see if the qualitative
behaviour of the system changes significantly when the vortex is not far above the
layer.

We first consider the two cases where the circulation of the vortex is opposite
in sense to that of the layer. In figure 14, Γ̃ = −2,−4. For Γ̃ = −2, the interface
initially grows to an amplitude of nearly 2. By t = 10, the disturbance begins to
overturn and the growth then appears to slow. Once it starts to overturn, irrotational
flow is entrained into the layer in a thin crevice which grows in the downstream
direction. Also in figure 14, for Γ̃ = −4, a larger disturbance forms and more rapid
growth is observed. By t = 10 the disturbance has steepened and begins to overturn.
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Figure 15. The vertical and horizontal displacement of the vortex. The solid line corresponds to
the vortex with circulation Γ̃ = −4, the dashed line Γ̃ = −2. The initial height of the vortex is
yv(0) = 3.
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Figure 16. The deformation of the interface delineating the uniform vorticity layer from the
irrotational flow at four different times. The circulation of the vortex is Γ̃ = 8 and its initial height
is yv(0) = 3.



184 O. V. Atassi

3.0

2.6

2.2

8

4

0 10 20

Time

yv

xv

Figure 17. The horizontal and vertical displacement of the vortex. The circulation of the vortex is
Γ̃ = 8 and its initial height is yv(0) = 3.

In this case the growth continues and by t = 20 the disturbance has been stretched
into a thin finger of vorticity which extends into the irrotational flow to a height of
approximately 3.2. In both cases, the vortices move away from the layer.

Figure 15 shows the displacement of the vortex for these two cases. When Γ̃ = −2
we see that the interaction appears to wane around t = 10 as is indicated by the
vertical vortex position levelling off. By t = 20 the vortex has ascended to a height of
nearly 3.2. However, for Γ̃ = −4 the interaction is stronger and although the vortex
is displaced to a height of 4.2 (t = 20), the unsteady interaction continues to persist
as is indicated by the vortex continuing to move away from the layer.

We now consider a stronger vortex but one where the circulation has the same
sense as that of the layer (figure 16). In this case, a disturbance is seen to grow to
an amplitude of 2 and propagate downstream. By t = 10 the disturbance steepens
and begins to roll up and entrain irrotational fluid. From figure 17, we see by the
vertical displacement of the vortex that the interaction of the vortex with the interface
appears to wane to a small extent by t = 10. This occurs despite the descent of the
vortex toward the layer which by t = 20 is at yv = 2.2. However, the distance between
the x-location of the vortex and the primary interfacial disturbance is increasing with
time as is evident in figure 16. Thus, even though the vortex descends towards the
interface, the total distance from the interfacial disturbance grows with time.

Both positive and negative vortices near the layer can result in rollup and entrain
irrotational fluid. However, the interaction with a negative vortex is stronger. In this
case the layer deforms more even though the magnitude of the circulations of the
vortices in figure 14 are smaller than the circulation of the vortex in figure 15 and the
negative vortices mover upward, away from the layer.
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Figure 18. The deformation of the interface for t = 0, 5, 8, 10. In column (a), Γ̃ = 10 and yv(0) = 0.4
and in column (b) Γ̃ = 20 and yv(0) = 0.4. Below the solitary wave is an open circle which denotes
the position of the vortex.

4.2. The effect of horizontal vortex velocity

We have observed that when the vortex propagates with a velocity which is different
from the interfacial waves the interaction between the vortex and the layer is not
sustained for long time. In this subsection, we test this idea by considering two very
strong vortices, Γ̃ = 10 and 20, which are placed in the vorticity layer, yv(0) = 0.4,
and propagate downstream three to five times faster than the linear long-wave limit
of the linear phase velocity.

In figure 18, the deformation of the interface is shown for t = 0, 5, 8, 10. The
position of the vortex is indicated by the circle. In column (a), Γ̃ = 20 and in column
(b) Γ̃ = 10. Despite the large strength of the vortex, the amplitude of the waves does
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Figure 19. The pressure at different streamwise locations, x, along the wall. The solid, dotted,
dashed, long-dashed and dot-dashed lines correspond to t = 0, 5, 10, 15, 20 respectively and
yv(0) = 10. The non-dimensional pressure, P = p(x) − p(−∞) approaches zero as |x| → ∞. (a)

Γ̃ = 40 and (b) Γ̃ = −40. Note that the interface deformations for the corresponding cases are
shown in figures 4 and 10.

not continue to grow with time, and is moderate in size. In both cases, a solitary
wave of unchanging form propagates in tandem with the vortex leaving disturbances
which entrain thin filaments of irrotational flow deep into the layer far upstream.
The increasing distance between the vortex and the upstream disturbances and the
unchanging form of the solitary wave suggest a fleeting interaction. Similar results
(Atassi et al. 1997) were shown to exist when a strong vortex was placed very close
to the wall. In this case, the vortex propagated quickly downstream leaving dispersive
waves far behind it. Unlike those results, the disturbances here are not small and deep
penetration of irrotational flow into the layer is observed far upstream of the vortex.

5. The wall pressure
The wall pressure field can be determined from the velocity field via the momentum

equation. The pressure, p(x), takes the form

p(x, t) = p(−∞)−
[∫ x

−∞

∂u

∂t
dx′ + 1/2(u2 − 1)

]
. (5.1)
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Figure 20. As figure 19 but for yv(0) = 3 and (a) Γ̃ = 8, (b) Γ̃ = −4. Note that the interface
deformation for the corresponding cases is shown in figures 15 and 14.

The wall pressure is computed for four cases for which the interface deformation was
computed in the previous section. We examine the effect of a strong vortex–shear
layer interaction on the wall pressure. In the first two cases, Γ̃ = ±40 and yv(0) = 10.
Recall that when Γ̃ = −40 a strong interaction was observed which led to the
ejection of vorticity into the irrotational flow whereas when Γ̃ = 40 a weak, waning
interaction occurred and wave-like behaviour was observed on the interface. Figure
19 presents the wall pressure at the times t = 0, 5, 10, 15, 20. The corresponding plots
of the interface deformation are given in figures 4 and 10.

For Γ̃ = −40, the pressure along the wall starts as a symmetric trough with a
peak value of −0.5 directly below the vortex (xv = 0). The pressure decays for large
values of |x|. As time evolves, the pressure increases near the location of the initial
trough to a value of nearly 0.25 and a low-pressure region develops upstream nearly
reaching a value of −0.9. This corresponds to more than a tripling in magnitude of
the initial maximum pressure. The x-location of this low-pressure region coincides
with the x-location of the region of ejected vorticity shown in figure 10.

When Γ̃ = 40 an initially symmetric pressure disturbance with a minimum value
near −0.6 lies directly below the vortex. Again the pressure decays for large |x|. As
time evolves the magnitude of the initial pressure trough decreases slightly and a
small pressure disturbance develops and propagates downstream of the trough. The
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x-location of this pressure disturbance coincides with the solitary wave that moves
downstream as seen in figure 4.

In figure 20, the pressure is plotted at the times t = 0, 5, 10, 15, 20 for cases where
Γ̃ = −4, 8 and yv(0) = 3. Recall that when Γ̃ = −4 (figure 14), a strong interaction
was observed and a narrow strip of vorticity was ejected into the irrotational flow
whereas for Γ̃ = 8 (figure 16), a large disturbance was formed but the interaction
between the vortex and the layer diminished with time. Figure 20(b) (Γ̃ = −4) shows
a small pressure peak lying directly below the vortex. For 0 6 t 6 10 this pressure
peak grows for x > 0 and propagates downstream. Upstream (x < 0) a significant
drop in pressure is observed near x = −4. By t = 10 this new pressure trough reaches
an extremum and for larger times decreases while a smaller wave emerges from the
main disturbance and propagates downstream. Recalling the corresponding plot of
the interface deformation, figure 14, we see that the x-location of the pressure drop
coincides with that of the ejecting and overturning vortical disturbance. For t > 10 we
observe that the mound of vorticity is being strained and becomes thinner in vertical
extent and longer in horizontal extent with time. This stretching of the mound-like
disturbance into a thin filament of vorticity stretching from −5 < x < 2 results in
a broadening and a decrease in the magnitude of wall pressure below it. Moreover,
the subsequent entrainment of irrotational flow results in a large increase in the
pressure below it. The wall pressure at 0 < x < 5 changes from a single trough to
several pressure waves of smaller amplitude. Interestingly, the wall pressure in this
case is quite different from that corresponding to Γ̃ = −40 and yv(0) = 10 (figure 10)
where the mound of vorticity is not stretched in the streamwise direction and instead
continues to accumulate in a relatively localized region near x = −15. In the present
case, overturning and entrainment of irrotational flow into the layer dominate the
long-time behaviour resulting in an increase in the pressure minimum.

When Γ̃ = 8, a symmetric pressure trough forms with its maximum amplitude
initially lying below the vortex. As time evolves, the magnitude of the pressure
minimum decreases and propagates slowly downstream. Another pressure disturbance
begins to emerge downstream of the main disturbance and propagates downstream.
The increase in pressure appears to be related to the entrainment and penetration of
irrotational flow into the layer as observed in figure 16.

5.1. The spectral decomposition of the wall pressure

It is interesting to study how the spectrum is modified by the unsteady interaction.
As a result, we compute the spectral decomposition of the wall pressure for the two
cases Γ̃ = ±40, yv(0) = 10.

Figure 21 shows the wall pressure spectrum where column (a) corresponds to
Γ̃ = −40 and (b) to Γ̃ = 40. Recall that the corresponding wall pressure plots
are shown in figure 19. When Γ̃ = −40, the initial spectrum shows a maximum
at low wavenumbers and then a rapid decay at higher wavenumbers. As the wall
pressure evolves, a cascade to higher wavenumbers is observed and is indicated by the
broadening of the spectrum. This is consistent with the wall pressure shown in figure 18
which indicates the steepening and growth of several smaller scale disturbances. When
Γ̃ = 40, figure 19 shows that the wall pressure breaks up into several disturbances
over time. The spectrum initially has its maximum at low wavenumbers and rapidly
decays at higher wavenumbers. As the vortex–layer interaction evolves with time,
several new harmonics in the spectrum are observed. It is suggested that these new
harmonics may be associated with the dispersive waves. Furthermore, this suggests
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Figure 21. The spectral composition of the wall pressure: (a) Γ̃ = −40 and (b) Γ̃ = 40.
In both cases, yv(0) = 10.

that forcing vortices which interact with wall-bounded vorticity layers may modify
the structure of the turbulence.

6. Discussion and conclusions
The unsteady interaction between a point vortex and a wall-bounded layer of

vorticity has been studied as a model problem for momentum and energy transfer
between rotational and irrotational flows. A variety of behaviour has been observed
to exist ranging from dispersive and solitary waves to ejection of vorticity and
entrainment of irrotational flow. We have examined several cases where the sign of
the vortex circulation was changed for similar magnitudes of the vortex strength.
Under conditions where the vortex induces the leading-order velocity field on the
interface and the interaction between the vortex and the layer is neglected (the
linear and very strong vortex cases: §§ 3.3.1–3.3.3) only the sign of the interface
shape changes when the vortex orientation is varied, see equations (3.38) and (3.50).
However when the self-interaction of the layer balances with the velocity induced by
the vortex, very different solutions may arise depending upon the sign of Γ̃ . When
Γ̃ < 0, a stationary point along the interface occurs for a smaller value of |Γ̃ | than
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for Γ̃ > 0 (3.60). Moreover, in this case, the horizontal vortex velocity is closer to the
velocity of the interfacial disturbances. As a result, the unsteady interaction between
the vortex and the layer is sustained for longer time. This result is consistent with
the small-amplitude results obtained in Atassi et al. (1997) where it was found that
small-amplitude disturbances resonated with the vortex when the phase velocity of
the interfacial waves coincided with the horizontal vortex velocity.

Although the deformation of the interface varies for each case, we classify the
phenomena as two types. When the interaction between the vortex and the layer is
not strong and/or not sustained, wave-like behaviour is observed. Otherwise, when a
strong interaction occurs, vorticity is ejected away from the wall and the irrotational
flow is entrained towards the wall. A number of general conclusions regarding the
conditions for strong interaction and its dynamical consequences may be drawn from
this study. Sustained unsteady interaction is most likely to occur when (i) the vortex
propagates with a horizontal velocity close to that of the interfacial waves, and (ii)
the sign of the vortex circulation is opposite to the vorticity in the layer.

Condition (i) follows from the property that the velocity induced by regions
of vorticity is inversely proportional to the distance separating them. Thus, if the
vortex propagates with a horizontal velocity which is different from that of the
interfacial disturbances the distance between them will grow with time and the
unsteady interaction will diminish with time. Conversely, when the vortex propagates
with the interfacial wave velocity a strong interaction occurs.

Condition (ii) was observed numerically and is supported by the analytical long-
wave approximation results showing that the initial mechanism for the ejection of
vorticity is the presence of a stationary point along the interface. A criterion for the
presence of a stationary point is derived and shows that such a point occurs more
easily when the vortex rotation is opposite to (180◦ out of phase) the vorticity of the
layer.

The wall pressure was computed and its spectral decomposition analysed to study
the dynamical consequences of the ejection of vorticity. An extremum in the wall
pressure was observed to form at a location which coincided with that of the growing
blob of vorticity.

Other work (Legras & Dritschel 1993; Trieling 1996) has studied the evolution
of patches of vorticity in the presence of a straining flow or adverse shear. These
studies have indicated that the outer edges of the patch form steepening fronts of
vorticity that are eventually stripped away from the patch. They considered patches
with both distributed and uniform vorticity distributions. In both cases they found
that the important parameter for vortex stripping was the ratio of the strain rate to
the maximum vorticity in the layer and they found that the ‘stripping of the vortex’
occurs at a weaker strain rate when the distribution of vorticity is non-uniform. In
this paper, we consider a very different geometry but the results suggest that when a
strong interaction between the vortex and the layer occurs a process similar to vortex
stripping results in the ejection of vorticity into the irrotational flow. During this
process, a region of vorticity is pulled away from the shear layer, becoming narrower
as it is ejected into the irrotational flow. The ejection of vorticity was observed to
extend up to six times the initial layer thickness. However, beyond these times steep
gradients exist which should be smoothed by viscosity and may act to pinch off the
thin filament resulting in an island of very concentrated vorticity. This process and
these observations add support to the idea that strong unsteady interactions between
regions of vorticity lead to the formation of isolated, thin filaments of vorticity
which are observed in many two-dimensional flows. The presence of these islands of
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concentrated vorticity act to transfer momentum between the outer irrotational flow
and the vorticity layer suggesting a mechanism whereby kinetic energy from the mean
flow is converted into turbulent fluctuations which cascade to higher wavenumbers.
Moreover, in qualitative agreement with turbulent boundary layer observations, strong
unsteady interaction is more likely when the rotation of the vortex is counter to the
mean vorticity near the wall.
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